



000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU-OF STANDARDS-1963-A

recepted beserves invested accepts accepts control symptom



# PRODUCTION OF PLASMA WITH VARIABLE, RADIAL

### ELECTRIC FIELDS

рÀ

Brittan Kustom, Robert L. Merlino, and Nicola D'Angelo

Department of Physics and Astronomy
The University of Iowa
Iowa City, Iowa 52242

SELECTE APR 1 8 1984

B

**ABSTRACT** 

FILE COPY

A device is described suitable for plasma wave experiments requiring relatively large, variable, radial electric fields perpendicular to a static magnetic field. By separately adjusting the the authors potentials of two independent, coaxial discharge plasmas, we have

been able to produce plasmas with a radial electric field

Er & 5 V/cm.

# DISTRIBUTION STATEMENT A

Approved for public releases

Distribution Unlimited

84 04 17 012

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                                                            | READ INSTRUCTIONS BEFORE COMPLETING FORM                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| U. of Iowa 84-3  AD-AT40229                                                                                                                                                                                                                                                                                                                          |                                                                |
| 4. TITLE (and Subtitle)                                                                                                                                                                                                                                                                                                                              | S. TYPE OF REPORT & PERIOD COVERED                             |
| Production of Plasma with Variable, Radial<br>Electric Fields                                                                                                                                                                                                                                                                                        | Progress, February 1984                                        |
| precorte Lieras                                                                                                                                                                                                                                                                                                                                      | 6. PERFORMING ORG. REPORT NUMBER                               |
| 7. AUTHOR(e)                                                                                                                                                                                                                                                                                                                                         | B. CONTRACT OR GRANT NUMBER(*)                                 |
| Brittan Kustom, Robert L. Merlino, and Nicola D'Angelo                                                                                                                                                                                                                                                                                               | N00014-83-K-0452                                               |
| Department of Physics and Astronomy The University of Iowa Iowa City, Iowa 52242                                                                                                                                                                                                                                                                     | 16. PROGRAM ELEMENT, PROJECT, TASK<br>AREA & WORK UNIT HUMBERS |
| 11. controlling office name and address Office of Naval Research                                                                                                                                                                                                                                                                                     | 12. REPORT DATE<br>February 1984                               |
| Physics Division Arlington, VA 22217                                                                                                                                                                                                                                                                                                                 | 13. NUMBER OF PAGES                                            |
| 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)                                                                                                                                                                                                                                                                           | 18. SECURITY CLASS. (of this report)                           |
|                                                                                                                                                                                                                                                                                                                                                      | UNCLASSIFIED                                                   |
|                                                                                                                                                                                                                                                                                                                                                      | 15a. DECLASSIFICATION/DOWNGRADING                              |
| Approved for public release; distribution unlimited.  17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)                                                                                                                                                                                                     |                                                                |
| 18. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                              |                                                                |
| To be published in Rev. Sci. Instrum.                                                                                                                                                                                                                                                                                                                |                                                                |
| 19. KEY WORDS (Continue on reverse side if necessary and identify by block mumber)                                                                                                                                                                                                                                                                   |                                                                |
| Radial Electric Fields Plasma Device                                                                                                                                                                                                                                                                                                                 |                                                                |
| Plasma Instabilities                                                                                                                                                                                                                                                                                                                                 |                                                                |
| 20. ASSTRACT (Continue on reverse side if necessary and identify by block number)                                                                                                                                                                                                                                                                    |                                                                |
| A device is described suitable for plasma wave experiments requiring relatively large, variable, radial electric fields perpendicular to a static magnetic field. By separately adjusting the potentials of two independent, coaxial discharge plasmas, we have been able to produce plasmas with a radial electric field $E_r \le 5 \text{ V/cm}$ . |                                                                |

DD 1 JAN 73 1473

EDITION OF 1 NOV 48 IS OBSOLETE 5/N 0102-LF-014-6601

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Then Boto Shirtered)

### I. INTRODUCTION

In this paper we describe a method for applying a relatively large ( $\leq$  5 V/cm), variable, radial electric field in a cylindrical, argon discharge column. This is an extension of previous work<sup>1</sup> in which radial electric fields,  $E_r \approx 0.5$  V/cm were applied in order to study the low-frequency Farley-Buneman instability<sup>2,3</sup> which is driven by a relative  $E \times E$  drift of electrons and ions on the order of  $C_S$ , the ion-acoustic speed. Lee et al.<sup>4</sup> have shown that for higher relative drifts the maximum growth rate of the instability shifts to higher frequencies. In order to study this instability larger radial electric fields,  $E_r \geq 1$  V/cm, are required. The ability to vary  $E_r$  while keeping the density approximately constant is also desirable.

A laboratory test of the (low-frequency) Farley-Buneman instability was carried out by D'Angelo et al.<sup>5</sup> in a Q-machine. In their setup the usual tantalum hot plate used to ionize the Cs atoms was replaced by a double-wound spiral of 2 mm diameter tantalum wire, with a spiral diameter of 6 cm. The spiral was heated by applying a 5.9 V potential difference between its edge (positive) and its center (negative). With this arrangement an average radial (inward) electric field of ~ 2 V/cm was produced in the plasma.



Availability Codes

Avail and/or

Special

Although this electric field was sufficient to produce the required  $\mathbf{E} \times \mathbf{B}$  drift, it could not be varied, since it was largely determined by the applied heating voltage.

Subsequent experiments on EM backscatter from Farley-Buneman waves by Alport et al. were carried out in a hot filament discharge in argon. In their setup a radial electric field variable from  $\sim 0$  V/cm to  $\sim 1$  V/cm was produced by applying a positive potential to anode rings concentric with the plasma column (cf. Fig. 4 Alport et al. 1) The average radial electric field tended to increase as the anode voltage,  $V_A$ , was increased, but saturated to  $E_T \simeq 0.5$  V/cm for  $V_A \gtrsim 40$  V. A similar arrangement had also been used by John and Saxena and John in their observations of the Farley-Buneman instability and the gradient-drift (cross-field) instability. (See Saxena for a review of experiments on these instabilities.)

### II. EXPERIMENTAL SETUP

We describe in this section the experimental apparatus and the operation of a device used to produce a plasma with a large, variable, radial electric field.

A schematic of the plasma device is shown in Fig. 1. This setup is a modification of the one used by Alport et al. 1 employing the same vacuum vessel, magnet coils, core plasma filament

structure, and anode rings. We have added a cylindrical aluminum can, 30 cm in diameter, which is electrically connected to anode rings  $A_2$  and  $A_3$ , and an additional set of filaments (AP, annular plasma radial filament structure) mounted on anode ring  $A_2$ . The anode end plate (EP) and ring  $A_4$  are connected to the vacuum chamber which is grounded. Plasma and primary electrons from the discharge chamber (right side) stream through the aperture in anode ring  $A_4$ , thus producing a central (or core), CP, plasma (with a diameter determined mainly by the aperture in  $A_4$ ) which is terminated in the main chamber on the (grounded) end plate attached to  $A_1$ . Typically the main discharge (CP) is operated with a background argon pressure of  $p = 10^{-3}$  Torr, with a discharge current  $I_{\rm d}^{\rm CP} = 1 - 4$  A, discharge voltage  $V_{\rm d}^{\rm CP} = 50$  V and at a magnetic field B = 225 G in the center of the main chamber. The axial variation of the magnetic field is about 15% over 40 cm.

The annular plasma is produced by a discharge between the AP filaments and anode rings  $A_2$ ,  $A_3$ , and the aluminum can. This discharge is operated at  $I_d^{AP} = 10$  mA - 15 mA and  $V_d^{AP} = 50$  V. The potential of the annular plasma is controlled by varying the anode bias  $V_A$ . The power supplies for producing and biasing the annular plasma are independent of those for the central plasma.

The operation of the device described above is similar to that of a standard double-plasma (DP) device. In a DP device two plasmas separately produced in a common vacuum chamber are partially

isolated by a negatively biased grid which prevents the two electron species from intermixing. In our setup, which may be described as a coaxial DP device, the axial magnetic field inhibits the mobility of the primary ionizing electrons, their gyroradius being = 1 mm.

The radial electric field is produced when the AP anode structure (A2, A3) and aluminum can is biased to a potential VA from 0 V to 20 V. When this potential is applied, the space potential of the annular plasma rises to a value > VA. The core plasma anodes A1 and  $A_{\mathcal{L}}$  are kept at earth potential, and as  $V_{A}$  is increased the CP space potential rises, but by only a small fraction of  $V_A$ . The resulting radial profiles of density, ne, and space potential, Vsp, are shown in Fig. 2. The discharge parameters for this case are  $I_d^{CP}$  = 4 A,  $I_d^{AP}$  = 10.5 mA, and  $V_d^{CP}$  =  $V_d^{CP}$  = 50 V, with the anode voltage  $V_A$  = 8  $V_a$ . Under these conditions a nearly parabolic potential profile is measured as a Langmuir probe is moved across the column over a distance -2.5 cm < R < + 2.5 cm, with a corresponding average radial electric field, Er = 1.4 V/cm. Similar curves are obtained for different VA's, which show a general increase of the radial electric field with increasing VA. This is illustrated in Fig. 3, where the difference in space potential,  $\Delta V_{SD}$ , as measured by a movable Langmuir probe, between R = 5 cm and R = 0 cm, is plotted as a function of  $V_A$ . The discharge conditions for Fig. 3 are  $I_d^{CP}$  = 1.8 A,  $I_d^{AP}$  = 10 mA with  $V_d^{CP}$  =  $V_d^{AP}$  = 50 V. If the anode voltage VA is increased above approximately 20 V, the core plasma

potential suddenly jumps to a value  $V_{\rm SP} \lesssim V_A$ , thus resulting in a small value of  $E_{\rm T}$ . The results of Fig. 3 are in contrast to the earlier data of Alport et al. which showed the radial electric field saturating at  $E_{\rm T} \simeq 0.5$  V/cm for  $V_A > 30$  V.

### III. SUMMARY AND CONCLUSIONS

We have described a device suitable for plasma wave studies requiring relatively large, variable, radial electric fields. By generating a very low density annular plasma surrounding a denser plasma core we are able to impose radial electric fields  $E_{\rm r} < 5$  V/cm by separately fixing the space potentials of each plasma. This represents roughly a factor of 4-5 improvement in  $E_{\rm r}$  over the setup used by Alport et al. 1

#### **ACKNOWLEDGMENTS**

We thank A. Scheller for his skillful technical assistance. This work was supported by the U.S. Office of Naval Research, contract NOOO14-83-K-0452 and in part by NASA grant NGL-16-001-043.

#### REFERENCES

- <sup>1</sup>M. J. Alport, N. D'Angelo, and H. L. Pécseli, J. Geophys. Res. <u>86</u>, 7694 (1981).
- <sup>2</sup>D. T. Farley, J. Geophys. Res. <u>68</u>, 6083 (1963).
- 30. Buneman, Phys. Rev. Lett. <u>10</u>, 285 (1963).
- 4K. Lee, C. F. Kennel, and J. M. Kindel, Radio Sci. 6, 209 (1971).
- <sup>5</sup>N. D'Angelo, H. L. Pécseli, and P. I. Petersen, J. Geophys. Res. <u>79</u>, 4747 (1974).
- <sup>6</sup>P. I. John and Y. C. Saxena, Geophys. Res. Lett., 2, 251 (1975).
- <sup>7</sup>Saxena, Y. C., and P. J. John, Geophys. Res. Lett.,  $\underline{2}$ , 492 (1975).
- <sup>8</sup>Yogesh C. Saxena, "Laboratory Experiments Related to Plasma
  Instabilities in the Electrojets," in <u>Relation between Laboratory</u>
  and Space Plasmas, edited by H. Kikuchi (D. Reidel, Hingham, Mass.,
  1981).
- <sup>9</sup>R. J. Taylor, K. R. MacKenzie, and H. Ikezi, Rev. Sci. Instrum. 43, 1675 (1972).

## FIGURE CAPTIONS

- Fig. 1. (a) The experimental setup, showing a topview of the coaxial plasma device. (b) Core plasma and annular plasma filament structures.
- Fig. 2. Radial profiles of plasma electron density,  $n_e$ , and space potential,  $V_{sp}$ . Plasma densities are in the range of  $10^9-10^{10}~cm^{-3}.$
- Fig. 3. Difference in space potential  $\Delta V_{\rm SP}$ , between R = 0 cm and R = 5 cm as a function of the anode bias voltage  $V_{\rm A}$  .

Control Control

Fig. 1





FILMED

5-8-1